Automatically Finding Significant Topical Terms from Documents
نویسندگان
چکیده
With the pervasion of digital textual data, text mining is becoming more and more important to deriving competitive advantages. One factor for successful text mining applications is the ability of finding significant topical terms for discovering interesting patterns or relationships. Document keyphrases are phrases carrying the most important topical concepts for a given document. In many applications, keyphrases as textual elements are better suited for text mining and could provide more discriminating power than single words. This paper describes an automatic keyphrase identification program (KIP). KIP’s algorithm examines the composition of noun phrases and calculates their scores by looking up a domain-specific glossary database; the ones with higher scores are extracted as keyphrases. KIP’s learning function can enrich its glossary database by automatically adding new identified keyphrases. KIP’s personalization feature allows the user build a glossary database specifically suitable for the area of his/her interest.
منابع مشابه
Extracting Conceptual Terms from Medical Documents
Automated biomedical concept recognition is important for biomedical document retrieval and text mining research. In this paper, we describe a two-step concept extraction technique for documents in biomedical domain. Step one includes noun phrase extraction, which can automatically extract noun phrases from medical documents. Extracted noun phrases are used as concept term candidates which beco...
متن کاملAssociating Terms with Text Categories
Discriminating between text articles and automatically classifying documents is an essential task for many applications. With the prevalence of digital documents and the wide use of e-mail and web documents, text categorization is regaining interest and is becoming a central problem in digital text collections. There have been many approaches to solve this problem, mainly from the machine learn...
متن کاملTopic Trend Detection in Text Collections using Latent Dirichlet Allocation
Algorithms that enable the process of automatically mining distinct topics in document collections have become increasingly important due to their applications in many fields and the extensive growth of the number of documents in many domains. Traditionally, the task of topic discovery has been mainly addressed through algorithms that work on a snapshot view of the documents, which ignores the ...
متن کاملA Semi-Supervised Incremental Algorithm to Automatically Refine Topical Queries
The quality of the material collected by a context-based Web search systems is highly dependant on the vocabulary used to generate the search queries. This paper proposes to apply a semi-supervised algorithm to incrementally learn terms that can help bridge the terminology gap existing between the user’s information needs and the relevant documents’ vocabulary. The learning strategy uses an inc...
متن کاملDocument Re-ranking Based on Automatically Acquired Key Terms in Chinese Information Retrieval
For Information Retrieval, users are more concerned about the precision of top ranking documents in most practical situations. In this paper, we propose a method to improve the precision of top N ranking documents by reordering the retrieved documents from the initial retrieval. To reorder documents, we first automatically extract Global Key Terms from document set, then use extracted Global Ke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005